Running with Code Like with scissors, only more dangerous

9Jan/121

Revealing Prototype Pattern: Pros and Cons

A short while ago, I wrote a post generally saying good things about the Revealing Prototype Pattern but mostly focused tearing down the other part that was presented with it, namely the way that variables were declared in a chain separated by the comma operator. This post will discuss some of the pros and cons of using this pattern, and give some examples about when you should or shouldn’t use it.

Advantages

As Dan notes in his post, this features a significant improvement over straight prototype assignment (assignment of an object literal to a prototype), in that private visibility is supported. And because you’re still assigning an object to the prototype, you are able to take advantage of prototypal inheritance. (Next time: How prototypal inheritance really works and how it can make your head explode).

Except for chaining his variable declarations, I have to admit Dan had me pretty well sold on the Revealing Prototype Pattern. It’s very elegant; it provides good protection to its inner variables, and it uses a syntax we’ve been seeing more and more of ever since jQuery became a popular platform.

Unfortunately, it has some nasty drawbacks.

Disadvantages

To be fair, Dan lists some of the disadvantages about this pattern; however, he doesn’t quite list them as such, and I think he was possibly unaware of some of their implications:

There’s something interesting that happens with variables though, especially if you plan on creating more than one Calculator object in a page. Looking at the public functions you’ll see that the ‘this’ keyword is used to access the currNumberCtl and eqCtl variables defined in the constructor. This works great since the caller of the public functions will be the Calculator object instance which of course has the two variables defined. However, when one of the public functions calls a private function such as setVal(), the context of ‘this’ changes and you’ll no longer have access to the two variables.

The first time I read through that I glossed over the problems; I didn’t quite understand the issue until I wrote some code. So let’s do that – we’ll implement the Java StringTokenizer class:

function StringTokenizer(srcString, delim)
{
    if (typeof srcString === 'undefined')
        throw new ReferenceError("Parameter 0 'srcString' is required.");
    if (typeof srcString !== 'string')
        srcString = srcString.toString();
    if (typeof delim !== 'string')
        delim = ' ';
    
    if (!(this instanceof StringTokenizer))    // enforce constructor usage
        return new StringTokenizer(srcString, delim);
        
    this.sourceString = srcString;
    this.delimiter = delim;
}
StringTokenizer.prototype = (function()
{
    var that = this;
    
    var _tokens = that.sourceString.split(that.delimiter);
    var _index = 0;
    
    var _countTokens = function() { return _tokens.length; };
    var _hasMoreTokens = function() { return _index < _tokens.length; };
    var _nextToken = function()
    {
        if (!_hasMoreTokens())
            return false;
        
        var next = _tokens[_index];
        _index += 1;
        return next;
    };
    var _reset = function() { _index = 0; };
    
    var resultPrototype = 
    {
        countTokens: _countTokens,
        hasMoreTokens: _hasMoreTokens,
        nextToken: _nextToken,
        reset: _reset
    };
    return resultPrototype;
})();

If you’ve ever written a jQuery plugin, you’ll probably recognize what I did with the prototype assignment function; when writing jQuery plugins, it’s common to close over the current instance of the jQuery object by assigning var that = $(this); so that you can write event-handler functions without losing access to the overall context. Unfortunately, what I did in this case is wrong; you may already see why.

var that = this;

In this context, this is a reference to the global object, not to the instance of the object – even though the prototype is being set. This is a generalization of what Dan said. Rewriting it to overcome it results in information leaking:

function StringTokenizer(srcString, delim)
{
    if (typeof srcString === 'undefined')
        throw new ReferenceError("Parameter 0 'srcString' is required.");
    if (typeof srcString !== 'string')
        srcString = srcString.toString();
    if (typeof delim !== 'string')
        delim = ' ';
    
    if (!(this instanceof StringTokenizer))    // enforce constructor usage
        return new StringTokenizer(srcString, delim);
        
    this.sourceString = srcString;
    this.delimiter = delim;
    this.tokens = srcString.split(delim);
    this.index = 0;
}
StringTokenizer.prototype = (function()
{
    var _countTokens = function() { return this.tokens.length; };
    var _hasMoreTokens = function() { return this.index < this.tokens.length; };
    var _nextToken = function()
    {
        if (!this.hasMoreTokens())
            return false;
        
        var next = this.tokens[this.index];
        this.index += 1;
        return next;
    };
    var _reset = function() { this.index = 0; };
    
    var resultPrototype = 
    {
        countTokens: _countTokens,
        hasMoreTokens: _hasMoreTokens,
        nextToken: _nextToken,
        reset: _reset
    };
    return resultPrototype;
})();

The code works correctly; but you can see that we have to make public all of the state variables we’ll use in the constructor. (The alternatives are to either initialize the state variables in each function, where they would still be public; or to create an init function, which would still cause the variables to be public AND would require the user to know to call the init function before calling anything else).

Dan also indicated that you needed a workaround for private functions:

There are a few tricks that can be used to deal with this, but to work around the context change I simply pass “this” from the public functions into the private functions.

Personally, I prefer to try to avoid things one might call clever or tricky, because that’s code for “so complex you can’t understand it”. But even in the case where you have a public function, you’ll still get an error if you don’t reference it via a public function call. This error is nonintuitive and could otherwise make you go on a bug hunt for a long time. Consider this change to the above code:

    var _hasMoreTokens = function() { return this.index < this.tokens.length; };
    var _nextToken = function()
    {
        if (!_hasMoreTokens())   // changed from:   if (!this.hasMoreTokens())
            return false;
        
        var next = this.tokens[this.index];
        this.index += 1;
        return next;
    };

Simply removing the ‘this’ reference in the caller is enough to cause ‘this’ to go out-of-scope in the _hasMoreTokens function. This is completely unintuitive behavior for developers who grew up in the classical inheritance model.

Alternatives

I wouldn’t want to give you all of these options without giving you an alternative. The alternative I present here is one in which the entire object is populated in the constructor:

"use strict";
function StringTokenizer(srcString, delim)
{
    if (typeof srcString === 'undefined')
        throw new ReferenceError("Parameter 0 'srcString' is required.");
    if (typeof srcString !== 'string')
        srcString = srcString.toString();
    if (typeof delim !== 'string')
        delim = ' ';
    
    if (!(this instanceof StringTokenizer))    // enforce constructor usage
        return new StringTokenizer(srcString, delim);
        
    if (typeof Object.defineProperty !== 'undefined')
    {
        Object.defineProperty(this, 'sourceString', { value: srcString });
        Object.defineProperty(this, 'delimiter', { value: delim });
    }
    else
    {
        this.sourceString = srcString;
        this.delimiter = delim;
    }
    
    var _tokens = this.sourceString.split(this.delimiter);
    var _index = 0;
    
    var _countTokens = function() { return _tokens.length; };
    var _hasMoreTokens = function() { return _index < _tokens.length; };
    var _nextToken = function()
    {
        if (!_hasMoreTokens())
            return false;
        
        var next = _tokens[_index];
        _index += 1;
        return next;
    };
    var _reset = function() { _index = 0; };
    
    if (typeof Object.defineProperty !== 'undefined')
    {
        Object.defineProperty(this, 'countTokens', { value: _countTokens });
        Object.defineProperty(this, 'hasMoreTokens', { value: _hasMoreTokens });
        Object.defineProperty(this, 'nextToken', { value: _nextToken });
        Object.defineProperty(this, 'reset', { value: _reset });
    }
    else
    {
        this.countTokens = _countTokens;
        this.hasMoreTokens = _hasMoreTokens;
        this.nextToken = _nextToken;
        this.reset = _reset;
    }
}

The advantage of a structure like this one is that you always have access to this. (Note that this example is unnecessarily large because I’ve taken the additional step of protecting the properties with Object.defineProperty where it is supported). You always have access to private variables and you always have access to the state. The unfortunate side effect of this strategy is that it doesn’t take advantage of prototypal inheritance (it’s not that you can’t do it with this strategy – more of that coming in the future) and that the entire private and public states (including functions) are closed-over, so you use more memory. Although, one may ask: is that really such a big deal in THIS sample?

Usage Considerations

The Revealing Prototype Pattern can be a good pattern to follow if you’re less concerned with maintaining data integrity and state. You have to be careful with access non-public data and functions with it, but it’s pretty elegant; and if you’re working on a lot of objects, you have the opportunity to save on some memory usage by delegating the function definitions into the prototype rather than the specific object definition. It falls short, though, when trying to emulate classical data structures and enforce protection mechanisms. As such, it can require complicated or clever tricks to work around its shortcomings, which can ultimately lead to overly-complex or difficult-to-maintain code.

Like most patterns, your mileage may vary.

Comments (1) Trackbacks (0)
  1. Thank you a lot for the great article!

    My way of using Dan’s pattern is to define all public properties (not methods) in the object __pthis:

    function Image(width, height)
    {
    // standard header
    this.__pthis = {};
    var pthis = this.__pthis;
    // end standard header
    //
    pthis.width = width;
    pthis.height = height;
    //
    this.__construct();
    }

    And then in a method I can do:
    function multiply()
    {
    var pthis = this.__pthis; // standard line for all the methods to make __pthis local variable
    return pthis.width * pthis.height; // example of how to access the properties
    }

    So I’ve got only one public variable __pthis (except for the public methods) and its easy to remember not to touch it from the outside code.

    When I call one method from another method I use myMethod.call(this, arg1, arg2) as Dan recommends, to pass context. For me there’s the only inconvenient thing in that pattern I have to do – using call() method to call my methods. But I have the maximum speed and memory saving (it can be good especially for mobile devices).


Leave a comment

ERROR: si-captcha.php plugin says GD image support not detected in PHP!

Contact your web host and ask them why GD image support is not enabled for PHP.

ERROR: si-captcha.php plugin says imagepng function not detected in PHP!

Contact your web host and ask them why imagepng function is not enabled for PHP.

No trackbacks yet.